

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Django Hordak 1.0 documentation

Django Hordak

Django Hordak is the core functionality of a double entry accounting system.
It provides thoroughly tested core models with relational integrity constrains
to ensure consistency.

Interfaces which build on Hordak include:

	battlecat [https://github.com/adamcharnock/battlecat] – General purpose accounting interface (work in progress)

	swiftwind [https://github.com/adamcharnock/swiftwind] – Accounting for communal households (work in progress)

Requirements

Hordak is tested against [https://travis-ci.org/adamcharnock/django-hordak]:

	Django >= 1.8, <= 1.10

	Python 2.7, 3.4, 3.5, nightly

	Postgres 9

Postgres is required, MySQL is unsupported. This is due to the database constraints we apply to
ensure data integrity. MySQL could be certainly supported in future, volunteers welcome.

Contents:

	Installation

	Double Entry Accounting for Developers
	Accounting in six bullet points (& three footnotes)

	In a little more detail

	Examples

	API Documentation
	Models

	Currency

	Forms

	Exceptions

	Notes
	Fixtures

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Adam Charnock.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Hordak 1.0 documentation

Installation

Installation using pip:

pip install django-hordak

Add to installed apps:

INSTALLED_APPS = [
 ...
 'hordak',
]

Run the migrations:

./manage.py migrate

You should now be able to import from Hordak:

from hordak.models import Account, Transaction, ...

 Copyright 2016, Adam Charnock.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Hordak 1.0 documentation

Double Entry Accounting for Developers

Hordak is inherently aimed at software developers as it provides core
functionality only. Friendly interfaces can certainly be built on top of it, but
if you are here there is a good change you are a developer.

If you are learning about accounting as developer you may feel – as I did – that
most of the material available doesn’t quite relate to the developer/STEM mindset. I
therefore provide some resources here that may be of use.

Accounting in six bullet points (& three footnotes)

I found the core explanation of double entry accounting to be confusing. After some
time I distilled it down to the following:

	Each account has a ‘type’ (asset, liability, income, expense, equity).

	Debits decrease the value of an account. Always. [1]

	Credits increase the value of an account. Always. [1]

	The sign of any asset or expense account balance is always flipped upon display (i.e. multiply by -1) [2] [3].

	A transaction is comprised of 1 or more credits and 1 or more debits (i.e. money most come from somewhere and then go somewhere).

	The value of a transaction’s debits and credits must be equal (money into transaction = money out of transaction).

	[1]	(1, 2) This is absolutely not what accountancy teaches. You’ll quickly see that there is a lot of wrangling over what
account types get increased/decreased with a debit/credit. I’ve simplified this on the backend as I strongly feel
this is a presentational issue, and not a business logic issue.

	[2]	Peter Selinger’s tutorial [http://www.mathstat.dal.ca/~selinger/accounting/tutorial.html] will give an indication of why this is (hint: see the signs in the accounting equation).
However, a simple
explanation is, ‘accountants don’t like negative numbers.’ A more nuanced interpretation
is that a positive number indicates not a positive amount of money, but a positive amount of
whatever the account is. So an expense of $1,000 is a positive amount of expense, even though it
probably means your $1,000 less well off.

	[3]	An upshot of this sign flipping in 4 is that points 2 & 3 appear not be be obeyed from an external perspective.
If you debit (decrease) an account, then flip its sign, it will look like you have actually increased the
account balance. This is because we are treating the sign of asset & expense accounts as a presentational issue,
rather than something to be dealt with in the core business logic.

In a little more detail

I found Peter Selinger’s tutorial [http://www.mathstat.dal.ca/~selinger/accounting/tutorial.html] to be very enlightening and is less terse than the functional description above.
The first section is short and covers single entry accounting, and then shows how one can expand that to create double
entry accounting. I found this background useful.

Examples

You live in a shared house. Everyone pays their share into a communal bank account
every month.

Example 1: Saving money to pay a bill (no sign flipping)

You pay the electricity bill every three months. Therefore every month you take £100
from everyone’s contributions and put it into Electricity Payable account (a liability
account) in the knowledge that you will pay the bill from this account when it eventually arrives:

These accounts are income & liability accounts, so neither balance needs to be flipped (flipping
only applies to asset & expense accounts). Therefore:

	Balances before:
	Housemate Contribution (income): £500

	Electricity Payable (liability): £0

	Transaction:
	£100 from Housemate Contribution to Electricity Payable

	Balances after:
	Housemate Contribution (income): £400

	Electricity Payable (liability): £100

This should also make intuitive sense. Some of the housemate contributions will be used to pay the electricity
bill, therefore the former decreases and the latter increases.

Example 2: Saving money to pay a bill (with sign flipping)

At the start of every month each housemate pays into the communal bank account. We
should therefore represent this somehow in our double entry system (something we ignored in
example 1).

We have an account called Bank which is an asset account (because this is money
we actually have). We also have a Housemate Contribution account which is an
income account.

Therefore, to represent the fact that we have been paid money, we must create a transaction.
However, money cannot be injected from outside our double entry system, so how do we deal with this?

Let’s show how we represent a single housemate’s payment:

	Balances before:
	Bank (asset): £0

	Housemate Contribution (income): £0

	Transaction:
	£500 from Bank to Housemate Contribution

	Balances after:
	Bank (asset): -£500 * -1 = £500

	Housemate Contribution (income): £500

Because the bank account is an asset account, we flip the sign of its balance.
The result is that both accounts increase in value.

 Copyright 2016, Adam Charnock.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Hordak 1.0 documentation

API Documentation

	Models
	Design

	Account

	Transaction

	Leg

	StatementImport

	StatementLine

	Currency
	Overview

	Classes

	Caching

	Currency Exchange

	Balance

	Exchange Rate Backends

	Forms

	Exceptions

 Copyright 2016, Adam Charnock.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Hordak 1.0 documentation

 	API Documentation

Models

Contents

	Models
	Design

	Account

	Transaction

	Leg

	StatementImport

	StatementLine

Design

The core models consist of:

	Account - Such as ‘Accounts Receivable’, a bank account, etc. Accounts can be arranged as a tree structure,
where the balance of the parent account is the summation of the balances of all its children.

	Transaction - Represents a movement between accounts. Each transaction must have two or more legs.

	Leg - Represents a flow of money into (debit) or out of (credit) a transaction. Debits are represented by
negative amounts, and credits by positive amounts. The sum of all a transaction’s legs must equal zero. This is
enforced with a database constraint.

Additionally, there are models which related to the import of external bank statement data:

	StatementImport - Represents a simple import of zero or more statement lines relating to a specific Account.

	StatementLine - Represents a statement line. StatementLine.create_transaction() may be called to
create a transaction for the statement line.

Account

	
class hordak.models.Account(*args, **kwargs)

	Represents an account

An account may have a parent, and may have zero or more children. Only root
accounts can have a type, all child accounts are assumed to have the same
type as their parent.

An account’s balance is calculated as the sum of all of the transaction Leg’s
referencing the account.

	
uuid

	SmallUUID

UUID for account. Use to prevent leaking of IDs (if desired).

	
name

	str

Name of the account. Required.

	
parent

	Account|None

Parent account, nonen if root account

	
code

	str

Account code. Must combine with account codes of parent
accounts to get fully qualified account code.

	
type

	str

Type of account as defined by Account.TYPES. Can only be set on
root accounts. Child accounts are assumed to have the same time as their parent.

	
TYPES

	Choices

Available account types. Uses Choices from django-model-utils. Types can be
accessed in the form Account.TYPES.asset, Account.TYPES.expense, etc.

	
is_bank_account

	bool

Is this a bank account. This implies we can import bank statements into
it and that it only supports a single currency.

	
classmethod validate_accounting_equation()

	Check that all accounts sum to 0

	
full_code

	Get the full code for this account

Do this by concatenating this account’s code with that
of all the parent accounts.

	
sign

	Returns 1 if a credit should increase the value of the
account, or -1 if a credit should decrease the value of the
account.

This is based on the account type as is standard accounting practice.
The signs can be derrived from the following expanded form of the
accounting equation:

Assets = Liabilities + Equity + (Income - Expenses)

Which can be rearranged as:

0 = Liabilities + Equity + Income - Expenses - Assets

Further details here: https://en.wikipedia.org/wiki/Debits_and_credits

	
balance(as_of=None, raw=False, **kwargs)

	Get the balance for this account, including child accounts

	Parameters:	
	as_of (Date) – Only include transactions on or before this date

	raw (bool) – If true the returned balance should not have its sign
adjusted for display purposes.

	**kwargs (dict) – Will be used to filter the transaction legs

	Returns:	Balance

See also

simple_balance()

	
simple_balance(as_of=None, raw=False, **kwargs)

	Get the balance for this account, ignoring all child accounts

	Parameters:	
	as_of (Date) – Only include transactions on or before this date

	raw (bool) – If true the returned balance should not have its sign
adjusted for display purposes.

	**kwargs (dict) – Will be used to filter the transaction legs

	Returns:	Balance

	
transfer_to(to_account, amount, **transaction_kwargs)

	Create a transaction which transfers amount to to_account

This is a shortcut utility method which simplifies the process of
transferring between accounts.

	Parameters:	
	to_account (Account) – The destination account

	amount (Money) – The amount to be transferred

Transaction

	
class hordak.models.Transaction(*args, **kwargs)

	Represents a transaction

A transaction is a movement of funds between two accounts. Each transaction
will have two or more legs, each leg specifies an account and an amount.

See also

Account.transfer_to() is a useful shortcut to avoid having to create transactions manually.

Examples

You can manually create a transaction as follows:

from django.db import transaction as db_transaction
from hordak.models import Transaction, Leg

with db_transaction.atomic():
 transaction = Transaction.objects.create()
 Leg.objects.create(transaction=transaction, account=my_account1, amount=Money(100, 'EUR'))
 Leg.objects.create(transaction=transaction, account=my_account2, amount=Money(-100, 'EUR'))

	
uuid

	SmallUUID

UUID for transaction. Use to prevent leaking of IDs (if desired).

	
timestamp

	datetime

The datetime when the object was created.

	
date

	date

The date when the transaction actually occurred, as this may be different to
timestamp.

	
description

	str

Optional user-provided description

Leg

	
class hordak.models.Leg(*args, **kwargs)

	The leg of a transaction

Represents a single amount either into or out of a transaction. All legs for a transaction
must sum to zero, all legs must be of the same currency.

	
uuid

	SmallUUID

UUID for transaction leg. Use to prevent leaking of IDs (if desired).

	
transaction

	Transaction

Transaction to which the Leg belongs.

	
account

	Account

Account the leg is transferring to/from.

	
amount

	Money

The amount being transferred

	
description

	str

Optional user-provided description

	
type

	str

hordak.models.DEBIT or hordak.models.CREDIT.

StatementImport

	
class hordak.models.StatementImport(*args, **kwargs)

	Records an import of a bank statement

	
uuid

	SmallUUID

UUID for statement import. Use to prevent leaking of IDs (if desired).

	
timestamp

	datetime

The datetime when the object was created.

	
bank_account

	Account

The account the import is for (should normally point to an asset
account which represents your bank account)

StatementLine

	
class hordak.models.StatementLine(*args, **kwargs)

	Records an single imported bank statement line

A StatementLine is purely a utility to aid in the creation of transactions
(in the process known as reconciliation). StatementLines have no impact on
account balances.

However, the StatementLine.create_transaction() method can be used to create
a transaction based on the information in the StatementLine.

	
uuid

	SmallUUID

UUID for statement line. Use to prevent leaking of IDs (if desired).

	
timestamp

	datetime

The datetime when the object was created.

	
date

	date

The date given by the statement line

	
statement_import

	StatementImport

The import to which the line belongs

	
amount

	Decimal

The amount for the statement line, positive or nagative.

	
description

	str

Any description/memo information provided

	
transaction

	Transaction

Optionally, the transaction created for this statement line. This normally
occurs during reconciliation. See also StatementLine.create_transaction().

	
is_reconciled

	Has this statement line been reconciled?

Determined as True if transaction has been set.

	Returns:	True if reconciled, False if not.

	Return type:	bool

	
create_transaction(to_account)

	Create a transaction for this statement amount and account, into to_account

This will also set this StatementLine’s transaction attribute to the newly
created transaction.

	Parameters:	to_account (Account) – The account the transaction is into / out of.

	Returns:	The newly created (and committed) transaction.

	Return type:	Transaction

 Copyright 2016, Adam Charnock.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Hordak 1.0 documentation

 	API Documentation

Currency

Contents

	Currency
	Overview

	Classes

	Caching

	Currency Exchange

	Balance

	Exchange Rate Backends

Overview

Hordak features multi currency support. Each account in Hordak can support one or more currencies.
Hordak does provide currency conversion functionality, but should be as part of the display logic
only. It is also a good idea to make it clear to users that you are showing converted values.

The preference for Hordak internals is to always store & process values in the intended currency. This
is because currency conversion is an inherently lossy process. Exchange rates vary over time, and rounding
errors mean that currency conversions are not reversible without data loss (e.g. ¥176.51 -> $1.54 -> ¥176.20).

Classes

Money instances:

The Money class is provided by moneyd [https://github.com/limist/py-moneyed] and combines both an amount and a currency into a single value.
Hordak uses these these as the core unit of monetary value.

Balance instances (see below for more details):

An account can hold multiple currencies, and a Balance instance is how we represent this.

A Balance may contain one or more Money objects. There will be precisely one Money object
for each currency which the account holds.

Balance objects may be added, subtracted etc. This will produce a new Balance object containing a
union of all the currencies involved in the calculation, even where the result was zero.

Accounts with is_bank_account=True may only support a single currency.

Caching

Currency conversion makes use of Django’s cache. It is therefore recommended that you
setup your Django cache [https://docs.djangoproject.com/en/1.10/topics/cache/] to something other than the default in-memory store.

Currency Exchange

The currency_exchange() helper function is provided to assist in creating
currency conversion Transactions.

	
hordak.utilities.currency.currency_exchange(source, source_amount, destination, destination_amount, trading_account, fee_destination=None, fee_amount=None, date=None, description=None)

	Exchange funds from one currency to another

Use this method to represent a real world currency transfer. Note this
process doesn’t care about exchange rates, only about the value
of currency going in and out of the transaction.

You can also record any exchange fees by syphoning off funds to fee_account of amount fee_amount. Note
that the free currency must be the same as the source currency.

Examples

For example, imagine our Canadian bank has obligingly transferred 120 CAD into our US bank account.
We sent CAD 120, and received USD 100. We were also changed 1.50 CAD in fees.

We can represent this exchange in Hordak as follows:

from hordak.utilities.currency import currency_exchange

currency_exchange(
 # Source account and amount
 source=cad_cash,
 source_amount=Money(120, 'CAD'),
 # Destination account and amount
 destination=usd_cash,
 destination_amount=Money(100, 'USD'),
 # Trading account the exchange will be done through
 trading_account=trading,
 # We also incur some fees
 fee_destination=banking_fees,
 fee_amount=Money(1.50, 'CAD')
)

We should now find that:

	cad_cash.balance() has decreased by CAD 120

	usd_cash.balance() has increased by USD 100

	banking_fees.balance() is CAD 1.50

	trading_account.balance() is USD 100, CAD -120

You can perform trading_account.normalise() to discover your unrealised gains/losses
on currency traded through that account.

	Parameters:	
	source (Account) – The account the funds will be taken from

	source_amount (Money) – A Money instance containing the inbound amount and currency.

	destination (Account) – The account the funds will be placed into

	destination_amount (Money) – A Money instance containing the outbound amount and currency

	trading_account (Account) – The trading account to be used. The normalised balance of this account will indicate
gains/losses you have made as part of your activity via this account. Note that the normalised balance
fluctuates with the current exchange rate.

	fee_destination (Account) – Your exchange may incur fees. Specifying this will move incurred fees
into this account (optional).

	fee_amount (Money) – The amount and currency of any incurred fees (optional).

	description (str) – Description for the transaction. Will default to describing funds in/out & fees (optional).

	date (datetime.date) – The date on which the transaction took place. Defaults to today (optional).

	Returns:	The transaction created

	Return type:	(Transaction)

See also

You can see the above example in practice in CurrencyExchangeTestCase.test_fees in test_currency.py [https://github.com/adamcharnock/django-hordak/blob/master/hordak/tests/utilities/test_currency.py].

Balance

	
class hordak.utilities.currency.Balance(_money_obs=None, *args)

	An account balance

Accounts may have multiple currencies. This class represents these multi-currency
balances and provides math functionality. Balances can be added, subtracted, multiplied,
divided, absolute’ed, and have their sign changed.

Examples

Example use:

Balance([Money(100, 'USD'), Money(200, 'EUR')])

Or in short form
Balance(100, 'USD', 200, 'EUR')

Important

Balances can also be compared, but note that this requires a currency conversion step.
Therefore it is possible that balances will compare differently as exchange rates
change over time.

	
monies()

	Get a list of the underlying Money instances

	Returns:	A list of zero or money money instances. Currencies will be unique.

	Return type:	([Money])

	
normalise(to_currency)

	Normalise this balance into a single currency

	Parameters:	to_currency (str) – Destination currency

	Returns:	A new balance object containing a single Money value in the specified currency

	Return type:	(Balance)

Exchange Rate Backends

	
class hordak.utilities.currency.BaseBackend

	Top-level exchange rate backend

This should be extended to hook into your preferred exchange rate service.
The primary method which needs defining is _get_rate().

	
cache_rate(currency, date, rate)

	Cache a rate for future use

	
get_rate(currency, date)

	Get the exchange rate for currency against _INTERNAL_CURRENCY

If implementing your own backend, you should probably override _get_rate()
rather than this.

	
_get_rate(currency, date)

	Get the exchange rate for currency against INTERNAL_CURRENCY

You should implement this in any custom backend. For each rate
you should call cache_rate().

Normally you will only need to call cache_rate() once. However, some
services provide multiple exchange rates in a single response,
in which it will likely be expedient to cache them all.

Important

Not calling cache_rate() will result in your backend service being called for
every currency conversion. This could be very slow and may result in your
software being rate limited (or, if you pay for your exchange rates, you may
get a big bill).

	
class hordak.utilities.currency.FixerBackend

	Use fixer.io for currency conversions

 Copyright 2016, Adam Charnock.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Hordak 1.0 documentation

 	API Documentation

Forms

Contents

	Forms

Base forms for Django Hordak

This section is a work in progress. Forms will be added as work
progresses with the swiftwind and battlecat projects.

 Copyright 2016, Adam Charnock.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Hordak 1.0 documentation

 	API Documentation

Exceptions

	
exception hordak.exceptions.HordakError

	Abstract exception type for all Hordak errors

	
exception hordak.exceptions.AccountingError

	Abstract exception type for errors specifically related to accounting

	
exception hordak.exceptions.AccountTypeOnChildNode

	Raised when trying to set a type on a child account

The type of a child account is always inferred from its root account

	
exception hordak.exceptions.ZeroAmountError

	Raised when a zero amount is found on a transaction leg

Transaction leg amounts must be none zero.

	
exception hordak.exceptions.AccountingEquationViolationError

	Raised if - upon checking - the accounting equation is found to be violated.

The accounting equation is:

0 = Liabilities + Equity + Income - Expenses - Assets

	
exception hordak.exceptions.LossyCalculationError

	Raised to prevent a lossy or imprecise calculation from occurring.

Typically this may happen when trying to multiply/divide a monetary value
by a float.

	
exception hordak.exceptions.BalanceComparisonError

	Raised when comparing a balance to an invalid value

A balance must be compared against another balance or a Money instance

	
exception hordak.exceptions.TradingAccountRequiredError

	Raised when trying to perform a currency exchange via an account other than a ‘trading’ account

	
exception hordak.exceptions.InvalidFeeCurrency

	Raised when fee currency does not match source currency

 Copyright 2016, Adam Charnock.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Django Hordak 1.0 documentation

Notes

A collection of notes and points which may prove useful.

Fixtures

The following should work well for creating fixtures for your Hordak data:

./manage.py dumpdata hordak --indent=2 --natural-primary --natural-foreign > fixtures/my-fixture.json

 Copyright 2016, Adam Charnock.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Django Hordak 1.0 documentation

 Python Module Index

 h

 			

 		
 h	

 	[image: -]
 	
 hordak	

 	
 	
 hordak.exceptions	

 	
 	
 hordak.forms	

 	
 	
 hordak.models	

 	
 	
 hordak.utilities.currency	

 Copyright 2016, Adam Charnock.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Django Hordak 1.0 documentation

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | S
 | T
 | U
 | V
 | Z

_

 	

 	_get_rate() (hordak.utilities.currency.BaseBackend method)

A

 	

 	Account (class in hordak.models)

 	account (hordak.models.Leg attribute)

 	AccountingEquationViolationError

 	

 	AccountingError

 	AccountTypeOnChildNode

 	amount (hordak.models.Leg attribute)

 	

 	(hordak.models.StatementLine attribute)

B

 	

 	Balance (class in hordak.utilities.currency)

 	balance() (hordak.models.Account method)

 	BalanceComparisonError

 	

 	bank_account (hordak.models.StatementImport attribute)

 	BaseBackend (class in hordak.utilities.currency)

C

 	

 	cache_rate() (hordak.utilities.currency.BaseBackend method)

 	code (hordak.models.Account attribute)

 	

 	create_transaction() (hordak.models.StatementLine method)

 	currency_exchange() (in module hordak.utilities.currency)

D

 	

 	date (hordak.models.StatementLine attribute)

 	

 	(hordak.models.Transaction attribute)

 	

 	description (hordak.models.Leg attribute)

 	

 	(hordak.models.StatementLine attribute)

 	(hordak.models.Transaction attribute)

F

 	

 	FixerBackend (class in hordak.utilities.currency)

 	

 	full_code (hordak.models.Account attribute)

G

 	

 	get_rate() (hordak.utilities.currency.BaseBackend method)

H

 	

 	hordak.exceptions (module)

 	hordak.forms (module)

 	hordak.models (module)

 	

 	hordak.utilities.currency (module)

 	HordakError

I

 	

 	InvalidFeeCurrency

 	is_bank_account (hordak.models.Account attribute)

 	

 	is_reconciled (hordak.models.StatementLine attribute)

L

 	

 	Leg (class in hordak.models)

 	

 	LossyCalculationError

M

 	

 	monies() (hordak.utilities.currency.Balance method)

N

 	

 	name (hordak.models.Account attribute)

 	

 	normalise() (hordak.utilities.currency.Balance method)

P

 	

 	parent (hordak.models.Account attribute)

S

 	

 	sign (hordak.models.Account attribute)

 	simple_balance() (hordak.models.Account method)

 	statement_import (hordak.models.StatementLine attribute)

 	

 	StatementImport (class in hordak.models)

 	StatementLine (class in hordak.models)

T

 	

 	timestamp (hordak.models.StatementImport attribute)

 	

 	(hordak.models.StatementLine attribute)

 	(hordak.models.Transaction attribute)

 	TradingAccountRequiredError

 	Transaction (class in hordak.models)

 	transaction (hordak.models.Leg attribute)

 	

 	(hordak.models.StatementLine attribute)

 	

 	transfer_to() (hordak.models.Account method)

 	type (hordak.models.Account attribute)

 	

 	(hordak.models.Leg attribute)

 	TYPES (hordak.models.Account attribute)

U

 	

 	uuid (hordak.models.Account attribute)

 	

 	(hordak.models.Leg attribute)

 	(hordak.models.StatementImport attribute)

 	(hordak.models.StatementLine attribute)

 	(hordak.models.Transaction attribute)

V

 	

 	validate_accounting_equation() (hordak.models.Account class method)

Z

 	

 	ZeroAmountError

 Copyright 2016, Adam Charnock.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Django Hordak 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Adam Charnock.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

