

Django Hordak

Django Hordak is the core functionality of a double entry accounting system.
It provides thoroughly tested core models with relational integrity constrains
to ensure consistency.

Hordak also includes a basic accounting interface. This should allow you to get
up-and-running quickly. However, the expectation is that you will either heavily
build on this example or use one of the interfaces detailed below.

Interfaces which build on Hordak include:

	battlecat [https://github.com/adamcharnock/battlecat] – General purpose accounting interface (work in progress)

	swiftwind [https://github.com/adamcharnock/swiftwind] – Accounting for communal households (work in progress)

Requirements

Hordak is tested against [https://travis-ci.org/adamcharnock/django-hordak]:

	Django >= 1.10, <= 2.0

	Python >= 3.4

	Postgres >= 9.5

Postgres is required, MySQL is unsupported. This is due to the database constraints we apply to
ensure data integrity. MySQL could be certainly supported in future, volunteers welcome.

Contents:

	Installation
	Using the interface

	Using the models

	Settings
	DEFAULT_CURRENCY

	CURRENCIES

	HORDAK_DECIMAL_PLACES

	HORDAK_MAX_DIGITS

	Customising Templates

	Double Entry Accounting for Developers
	Accounting in six bullet points (& three footnotes)

	In a little more detail

	Examples

	Hordak Database Triggers
	The check_leg trigger

	The zero_amount_check constraint

	The check_leg_and_account_currency_match constraint

	The bank_accounts_are_asset_accounts constraint

	The update_full_account_codes trigger

	The check_account_type trigger

	API Documentation
	Models

	Views

	Forms

	Money Utilities

	Currency Utilities

	Exceptions

	Notes
	Fixtures

	Hordak Changelog
	1.1.0

Current limitations

Django Hordak currently does not guarantee sequential primary keys of database entities.
IDs are created using regular Postgres sequences, and as a result IDs may skip numbers in
certain circumstances. This may conflict with regulatory and audit requirements for
some projects. This is an area for future work
(1 [https://stackoverflow.com/a/19006312/764723],
2 [https://www.postgresql.org/message-id/44E376F6.7010802@seaworthysys.com],
3 [https://wiki.postgresql.org/wiki/FAQ#Why_are_there_gaps_in_the_numbering_of_my_sequence.2FSERIAL_column.3F_Why_aren.27t_my_sequence_numbers_reused_on_transaction_abort.3F],
4 [https://stackoverflow.com/questions/9984196/postgresql-gapless-sequences/9985219#9985219]).

Indices and tables

	Index

	Module Index

	Search Page

Installation

Installation using pip:

pip install django-hordak

Add to installed apps:

INSTALLED_APPS = [
 ...
 'mptt',
 'hordak',
]

Note

Hordak uses django-mptt [https://github.com/django-mptt/django-mptt] to provide the account tree structure. It must therefore be listed
in INSTALLED_APPS as shown above.

Before continuing, ensure the HORDAK_DECIMAL_PLACES and HORDAK_MAX_DIGITS
settings are set as desired.
Changing these values in future will require you to create your
own custom database migration in order to update your schema
(perhaps by using Django’s MIGRATION_MODULES setting). It is
therefore best to be sure of these values now.

Once ready, run the migrations:

./manage.py migrate

Using the interface

Hordak comes with a basic interface. The intention is that you will either build on it, or use a
another interface. To get started with the example interface you can add the
following to your urls.py:

urlpatterns = [
 ...
 url(r'^', include('hordak.urls', namespace='hordak'))
]

You should then be able to create a user and start the development server
(assuming you ran the migrations as detailed above):

Create a user to login as
./manage.py createsuperuser
Start the development server
./manage.py runserver

And now navigate to http://127.0.0.1:8000/.

Using the models

Hordak’s primary purpose is to provide a set of robust models with which you can model the core of a
double entry accounting system. Having completed the above setup you should be able to import these
models and put them to use.

from hordak.models import Account, Transaction, ...

You can find further details in the API documentation.
You may also find the accounting for developers section useful.

Settings

You can set the following your project’s settings.py file:

DEFAULT_CURRENCY

Default: "EUR"

The default currency to use when creating new accounts

CURRENCIES

Default: []

Any currencies (additional to DEFAULT_CURRENCY) for which you wish to create accounts.
For example, you may have "EUR" for your DEFAULT_CURRENCY, and ["USD", "GBP"] for your
additional CURRENCIES.

HORDAK_DECIMAL_PLACES

Default: 2

Number of decimal places available within monetary values.

HORDAK_MAX_DIGITS

Default: 13

Maximum number of digits allowed in monetary values.
Decimal places both right and left of decimal point are included in this count.
Therefore a maximum value of 9,999,999.999 would require HORDAK_MAX_DIGITS=10
and HORDAK_DECIMAL_PLACES=3.

Customising Templates

The easiest way to modify Hordak’s default interface is to customise the default
templates.

Note

This provides a basic level of customisation. For more control you will
need to extend the views, or create entirely new views of your own which
build on Hordak’s models.

Hordak’s templates can be found in hordak/templates/hordak [https://github.com/adamcharnock/django-hordak/tree/master/hordak/templates/hordak]. You can override these templates by
creating similarly named files in your app’s own templates directory.

For example, if you wish to override hordak/account_list.html, you should
create the file hordak/account_list.html within your own app’s template directory. Your template will
then be used by Django rather than the original.

Important

By default Django searches for templates in each app’s templates directory. It does
this in the order listed in INSTALLED_APPS. Therefore, your app must appear before ‘hordak’
in ‘INSTALLED_APPS’.

Double Entry Accounting for Developers

Hordak is inherently aimed at software developers as it provides core
functionality only. Friendly interfaces can certainly be built on top of it, but
if you are here there is a good change you are a developer.

If you are learning about accounting as developer you may feel – as I did – that
most of the material available doesn’t quite relate to the developer/STEM mindset. I
therefore provide some resources here that may be of use.

Accounting in six bullet points (& three footnotes)

I found the core explanation of double entry accounting to be confusing. After some
time I distilled it down to the following:

	Each account has a ‘type’ (asset, liability, income, expense, equity).

	Debits decrease the value of an account. Always. 1

	Credits increase the value of an account. Always. 1

	The sign of any asset or expense account balance is always flipped upon display (i.e. multiply by -1) 2 3.

	A transaction is comprised of 1 or more credits and 1 or more debits (i.e. money must come from somewhere and then go somewhere).

	The value of a transaction’s debits and credits must be equal (money into transaction = money out of transaction).

	1(1,2)

	This is absolutely not what accountancy teaches. You’ll quickly see that there is a lot of wrangling over what
account types get increased/decreased with a debit/credit. I’ve simplified this on the backend as I strongly feel
this is a presentational issue, and not a business logic issue.

	2

	Peter Selinger’s tutorial [http://www.mathstat.dal.ca/~selinger/accounting/tutorial.html] will give an indication of why this is (hint: see the signs in the accounting equation).
However, a simple
explanation is, ‘accountants don’t like negative numbers.’ A more nuanced interpretation
is that a positive number indicates not a positive amount of money, but a positive amount of
whatever the account is. So an expense of $1,000 is a positive amount of expense, even though it
probably means your $1,000 less well off.

	3

	An upshot of this sign flipping in 4 is that points 2 & 3 appear not be be obeyed from an external perspective.
If you debit (decrease) an account, then flip its sign, it will look like you have actually increased the
account balance. This is because we are treating the sign of asset & expense accounts as a presentational issue,
rather than something to be dealt with in the core business logic.

In a little more detail

I found Peter Selinger’s tutorial [http://www.mathstat.dal.ca/~selinger/accounting/tutorial.html] to be very enlightening and is less terse than the functional description above.
The first section is short and covers single entry accounting, and then shows how one can expand that to create double
entry accounting. I found this background useful.

Examples

You live in a shared house. Everyone pays their share into a communal bank account
every month.

Example 1: Saving money to pay a bill (no sign flipping)

You pay the electricity bill every three months. Therefore every month you take £100
from everyone’s contributions and put it into Electricity Payable account (a liability
account) in the knowledge that you will pay the bill from this account when it eventually arrives:

These accounts are income & liability accounts, so neither balance needs to be flipped (flipping
only applies to asset & expense accounts). Therefore:

	Balances before:

	Housemate Contribution (income): £500

	Electricity Payable (liability): £0

	Transaction:

	£100 from Housemate Contribution to Electricity Payable

	Balances after:

	Housemate Contribution (income): £400

	Electricity Payable (liability): £100

This should also make intuitive sense. Some of the housemate contributions will be used to pay the electricity
bill, therefore the former decreases and the latter increases.

Example 2: Saving money to pay a bill (with sign flipping)

At the start of every month each housemate pays into the communal bank account. We
should therefore represent this somehow in our double entry system (something we ignored in
example 1).

We have an account called Bank which is an asset account (because this is money
we actually have). We also have a Housemate Contribution account which is an
income account.

Therefore, to represent the fact that we have been paid money, we must create a transaction.
However, money cannot be injected from outside our double entry system, so how do we deal with this?

Let’s show how we represent a single housemate’s payment:

	Balances before:

	Bank (asset): £0

	Housemate Contribution (income): £0

	Transaction:

	£500 from Bank to Housemate Contribution

	Balances after:

	Bank (asset): -£500 * -1 = £500

	Housemate Contribution (income): £500

Because the bank account is an asset account, we flip the sign of its balance.
The result is that both accounts increase in value.

Hordak Database Triggers

Hordak uses triggers at the database level instead of Django signals. This ensures that if data does not pass
through the Django ORM that integrity is still maintained via Hordak’s accounting business rules.

Note

These triggers are automatically added to the database engine through custom Django migration files. When
the migrate command is run these triggers will be created.

6 Triggers and constraints are added to interact with Hordak models:

	check_leg

	zero_amount_check

	check_leg_and_account_currency_match

	bank_accounts_are_asset_accounts

	update_full_account_codes

	check_account_type

The check_leg trigger

A trigger is added that executes a SQL procedure when each row in the hordak.models.Leg database table is
inserted, updated, or deleted.

This constraint is set with execution timing of DEFERRABLE INITIALLY DEFERRED, which means it is executed when a
transaction is finished.

Note

If a constraint is deferrable, this clause specifies the default time to check the constraint. If the constraint
is INITIALLY IMMEDIATE, it is checked after each statement. If the constraint is
INITIALLY DEFERRED, it is checked only at the end of the transaction. 1

This trigger ensures that the total amount for the legs of a transaction is equal to 0. Or else it raises a database
level exception.

Procedure Code

DECLARE
 tx_id INT;
 non_zero RECORD;
BEGIN
 IF (TG_OP = 'DELETE') THEN
 tx_id := OLD.transaction_id;
 ELSE
 tx_id := NEW.transaction_id;
 END IF;
 SELECT ABS(SUM(amount)) AS total, amount_currency AS currency
 INTO non_zero
 FROM hordak_leg
 WHERE transaction_id = tx_id
 GROUP BY amount_currency
 HAVING ABS(SUM(amount)) > 0
 LIMIT 1;
 IF FOUND THEN
 RAISE EXCEPTION 'Sum of transaction amounts in each currency must be 0. Currency % has non-zero total %',
 non_zero.currency, non_zero.total;
 END IF;
 RETURN NEW;
END;

The zero_amount_check constraint

A constraint is added that checks the value of the amount field of hordak.models.Leg.

This constraint ensures that amount value for a single leg transaction does not equal 0. Or else it raises a database
level exception.

Procedure Code

ALTER TABLE hordak_leg ADD CONSTRAINT zero_amount_check CHECK (amount != 0)

The check_leg_and_account_currency_match constraint

A trigger is added that executes a SQL procedure when each row in the hordak.models.Leg database table is
inserted, updated, or deleted. This constraint is set with execution timing of
DEFERRABLE INITIALLY DEFERRED

This procedure ensures that destination account for a leg transaction has the same currency as the origin account.

Procedure Code

DECLARE
BEGIN
 IF (TG_OP = 'DELETE') THEN
 RETURN OLD;
 END IF;
 PERFORM * FROM hordak_account WHERE id = NEW.account_id AND NEW.amount_currency = ANY(currencies);
 IF NOT FOUND THEN
 RAISE EXCEPTION 'Destination account does not support currency %', NEW.amount_currency;
 END IF;
 RETURN NEW;
END;

The bank_accounts_are_asset_accounts constraint

A constraint is added that interacts with the hordak.models.Account database table.

This constraint ensures that Account objects that have the is_bank_account flag set must be an asset account type.

Procedure Code

ADD CONSTRAINT bank_accounts_are_asset_accounts
CHECK (is_bank_account = FALSE OR _type = 'AS')

The update_full_account_codes trigger

A trigger is added that executes a SQL procedure when each row in the hordak.models.Account database table is
inserted, updated, or deleted and where it is also a root Account. This trigger is set with default execution timing of
DEFERRABLE INITIALLY IMMEDIATE

This procedure performs multiple activities:

	It sets any empty string hordak.models.Account account.code to NULL database value.

	It sets the account.full_code of children accounts to a combination of its parents account.code.

	If a parent account.code is NULL it sets the children’s subsequent account.full_code to NULL also.

Procedure Code

BEGIN
 -- Set empty string codes to be NULL
 UPDATE hordak_account SET code = NULL where code = '';

 -- Set full code to the combination of the parent account's codes
 UPDATE
 hordak_account AS a
 SET
 full_code = (
 SELECT string_agg(code, '' order by lft)
 FROM hordak_account AS a2
 WHERE a2.lft <= a.lft AND a2.rght >= a.rght AND a.tree_id = a2.tree_id
);

 -- Set full codes to NULL where a parent account includes a NULL code
 UPDATE
 hordak_account AS a
 SET
 full_code = NULL
 WHERE
 (
 SELECT COUNT(*)
 FROM hordak_account AS a2
 WHERE a2.lft <= a.lft AND a2.rght >= a.rght AND a.tree_id = a2.tree_id AND a2.code IS NULL
) > 0;
 RETURN NULL;
END;

The check_account_type trigger

A trigger is added that executes a SQL procedure when each row in the hordak.models.Account database table is
inserted or updated and where it is also a root Account. This trigger is set with default execution timing of
DEFERRABLE INITIALLY IMMEDIATE

This procedure sets children accounts to the same type as the parent account.

Procedure Code

BEGIN
 IF NEW.parent_id::BOOL THEN
 NEW.type = (SELECT type FROM hordak_account WHERE id = NEW.parent_id);
 END IF;
 RETURN NEW;
END;

	1

	Deferrable trigger parameters from CREATE TRIGGER [https://www.enterprisedb.com/docs/en/10/pg/sql-createtrigger.html].

API Documentation

	Models
	Account

	Transaction

	Leg

	StatementImport

	StatementLine

	Views
	Extending views

	Accounts

	Transactions

	Forms
	SimpleTransactionForm

	TransactionForm

	LegForm

	LegFormSet

	Money Utilities
	Ratio Split

	Currency Utilities
	Overview

	Classes

	Caching

	Currency Exchange

	Balance

	Exchange Rate Backends

	Exceptions

Models

Contents

	Models

	Account

	Transaction

	Leg

	StatementImport

	StatementLine

Account

	
class hordak.models.Account(*args, **kwargs)

	Represents an account

An account may have a parent, and may have zero or more children. Only root
accounts can have a type, all child accounts are assumed to have the same
type as their parent.

An account’s balance is calculated as the sum of all of the transaction Leg’s
referencing the account.

	
uuid

	UUID for account. Use to prevent leaking of IDs (if desired).

	Type

	SmallUUID

	
name

	Name of the account. Required.

	Type

	str

	
parent

	Parent account, nonen if root account

	Type

	Account|None

	
code

	Account code. Must combine with account codes of parent
accounts to get fully qualified account code.

	Type

	str

	
type

	Type of account as defined by Account.TYPES. Can only be set on
root accounts. Child accounts are assumed to have the same time as their parent.

	Type

	str

	
TYPES

	Available account types. Uses Choices from django-model-utils. Types can be
accessed in the form Account.TYPES.asset, Account.TYPES.expense, etc.

	Type

	Choices

	
is_bank_account

	Is this a bank account. This implies we can import bank statements into
it and that it only supports a single currency.

	Type

	bool

	
save(*args, **kwargs)

	If this is a new node, sets tree fields up before it is inserted
into the database, making room in the tree structure as neccessary,
defaulting to making the new node the last child of its parent.

It the node’s left and right edge indicators already been set, we
take this as indication that the node has already been set up for
insertion, so its tree fields are left untouched.

If this is an existing node and its parent has been changed,
performs reparenting in the tree structure, defaulting to making the
node the last child of its new parent.

In either case, if the node’s class has its order_insertion_by
tree option set, the node will be inserted or moved to the
appropriate position to maintain ordering by the specified field.

	
classmethod validate_accounting_equation()

	Check that all accounts sum to 0

	
sign

	Returns 1 if a credit should increase the value of the
account, or -1 if a credit should decrease the value of the
account.

This is based on the account type as is standard accounting practice.
The signs can be derrived from the following expanded form of the
accounting equation:

Assets = Liabilities + Equity + (Income - Expenses)

Which can be rearranged as:

0 = Liabilities + Equity + Income - Expenses - Assets

Further details here: https://en.wikipedia.org/wiki/Debits_and_credits

	
balance(as_of=None, raw=False, leg_query=None, **kwargs)

	Get the balance for this account, including child accounts

	Parameters

	
	as_of (Date) – Only include transactions on or before this date

	raw (bool) – If true the returned balance should not have its sign
adjusted for display purposes.

	kwargs (dict) – Will be used to filter the transaction legs

	Returns

	Balance

See also

simple_balance()

	
simple_balance(as_of=None, raw=False, leg_query=None, **kwargs)

	Get the balance for this account, ignoring all child accounts

	Parameters

	
	as_of (Date) – Only include transactions on or before this date

	raw (bool) – If true the returned balance should not have its sign
adjusted for display purposes.

	leg_query (models.Q) – Django Q-expression, will be used to filter the transaction legs.
allows for more complex filtering than that provided by **kwargs.

	kwargs (dict) – Will be used to filter the transaction legs

	Returns

	Balance

	
transfer_to(to_account, amount, **transaction_kwargs)

	Create a transaction which transfers amount to to_account

This is a shortcut utility method which simplifies the process of
transferring between accounts.

This method attempts to perform the transaction in an intuitive manner.
For example:

	Transferring income -> income will result in the former decreasing and the latter increasing

	Transferring asset (i.e. bank) -> income will result in the balance of both increasing

	Transferring asset -> asset will result in the former decreasing and the latter increasing

Note

Transfers in any direction between {asset | expense} <-> {income | liability | equity}
will always result in both balances increasing. This may change in future if it is
found to be unhelpful.

Transfers to trading accounts will always behave as normal.

	Parameters

	
	to_account (Account) – The destination account.

	amount (Money) – The amount to be transferred.

	transaction_kwargs – Passed through to transaction creation. Useful for setting the
transaction description field.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

Transaction

	
class hordak.models.Transaction(*args, **kwargs)

	Represents a transaction

A transaction is a movement of funds between two accounts. Each transaction
will have two or more legs, each leg specifies an account and an amount.

See also

Account.transfer_to() is a useful shortcut to avoid having to create transactions manually.

Examples

You can manually create a transaction as follows:

from django.db import transaction as db_transaction
from hordak.models import Transaction, Leg

with db_transaction.atomic():
 transaction = Transaction.objects.create()
 Leg.objects.create(transaction=transaction, account=my_account1, amount=Money(100, 'EUR'))
 Leg.objects.create(transaction=transaction, account=my_account2, amount=Money(-100, 'EUR'))

	
uuid

	UUID for transaction. Use to prevent leaking of IDs (if desired).

	Type

	SmallUUID

	
timestamp

	The datetime when the object was created.

	Type

	datetime

	
date

	The date when the transaction actually occurred, as this may be different to
timestamp.

	Type

	date

	
description

	Optional user-provided description

	Type

	str

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

Leg

	
class hordak.models.Leg(*args, **kwargs)

	The leg of a transaction

Represents a single amount either into or out of a transaction. All legs for a transaction
must sum to zero, all legs must be of the same currency.

	
uuid

	UUID for transaction leg. Use to prevent leaking of IDs (if desired).

	Type

	SmallUUID

	
transaction

	Transaction to which the Leg belongs.

	Type

	Transaction

	
account

	Account the leg is transferring to/from.

	Type

	Account

	
amount

	The amount being transferred

	Type

	Money

	
description

	Optional user-provided description

	Type

	str

	
type

	hordak.models.DEBIT or hordak.models.CREDIT.

	Type

	str

	
save(*args, **kwargs)

	Save the current instance. Override this in a subclass if you want to
control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist
that the “save” must be an SQL insert or update (or equivalent for
non-SQL backends), respectively. Normally, they should not be set.

	
account_balance_after()

	Get the balance of the account associated with this leg following the transaction

	
account_balance_before()

	Get the balance of the account associated with this leg before the transaction

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

StatementImport

	
class hordak.models.StatementImport(*args, **kwargs)

	Records an import of a bank statement

	
uuid

	UUID for statement import. Use to prevent leaking of IDs (if desired).

	Type

	SmallUUID

	
timestamp

	The datetime when the object was created.

	Type

	datetime

	
bank_account

	The account the import is for (should normally point to an asset
account which represents your bank account)

	Type

	Account

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

StatementLine

	
class hordak.models.StatementLine(*args, **kwargs)

	Records an single imported bank statement line

A StatementLine is purely a utility to aid in the creation of transactions
(in the process known as reconciliation). StatementLines have no impact on
account balances.

However, the StatementLine.create_transaction() method can be used to create
a transaction based on the information in the StatementLine.

	
uuid

	UUID for statement line. Use to prevent leaking of IDs (if desired).

	Type

	SmallUUID

	
timestamp

	The datetime when the object was created.

	Type

	datetime

	
date

	The date given by the statement line

	Type

	date

	
statement_import

	The import to which the line belongs

	Type

	StatementImport

	
amount

	The amount for the statement line, positive or nagative.

	Type

	Decimal

	
description

	Any description/memo information provided

	Type

	str

	
transaction

	Optionally, the transaction created for this statement line. This normally
occurs during reconciliation. See also StatementLine.create_transaction().

	Type

	Transaction

	
is_reconciled

	Has this statement line been reconciled?

Determined as True if transaction has been set.

	Returns

	True if reconciled, False if not.

	Return type

	bool

	
create_transaction(to_account)

	Create a transaction for this statement amount and account, into to_account

This will also set this StatementLine’s transaction attribute to the newly
created transaction.

	Parameters

	to_account (Account) – The account the transaction is into / out of.

	Returns

	The newly created (and committed) transaction.

	Return type

	Transaction

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

Views

Contents

	Views

	Extending views

	Accounts

	AccountListView

	AccountCreateView

	AccountUpdateView

	AccountTransactionView

	Transactions

	TransactionCreateView

	TransactionsReconcileView

Hordak provides a number of off-the-shelf views to aid in development. You may
need to implement your own version of (or extend) these views in order
to provide customised functionality.

Extending views

To extend a view you will need to ensure Django loads it by updating your urls.py file.
To do this, alter you current urls.py:

Replace this
urlpatterns = [
 ...
 url(r'^', include('hordak.urls', namespace='hordak'))
]

And changes it as follows, copying in the patterns from hordak’s root urls.py:

With this
from hordak import views as hordak_views

hordak_urls = [
 ... patterns from Hordak's root urls.py ...
]

urlpatterns = [
 url(r'^admin/', admin.site.urls),

 url(r'^', include(hordak_urls, namespace='hordak', app_name='hordak')),
 ...
]

Accounts

AccountListView

	
class hordak.views.AccountListView(**kwargs)

	View for listing accounts

Examples

urlpatterns = [
 ...
 url(r'^accounts/$', AccountListView.as_view(), name='accounts_list'),
]

	
model

	alias of hordak.models.core.Account

	
template_name = 'hordak/accounts/account_list.html'

	

	
context_object_name = 'accounts'

	

AccountCreateView

	
class hordak.views.AccountCreateView(**kwargs)

	View for creating accounts

Examples

urlpatterns = [
 ...
 url(r'^accounts/create/$', AccountCreateView.as_view(success_url=reverse_lazy('accounts_list')), name='accounts_create'),
]

	
form_class

	alias of hordak.forms.accounts.AccountForm

	
template_name = 'hordak/accounts/account_create.html'

	

	
success_url = '/'

	

AccountUpdateView

	
class hordak.views.AccountUpdateView(**kwargs)

	View for updating accounts

Note that hordak.forms.AccountForm prevents updating of the currency
and type fields. Also note that this view expects to receive the Account’s
uuid field in the URL (see example below).

Examples

urlpatterns = [
 ...
 url(r'^accounts/update/(?P<uuid>.+)/$', AccountUpdateView.as_view(success_url=reverse_lazy('accounts_list')), name='accounts_update'),
]

	
model

	alias of hordak.models.core.Account

	
form_class

	alias of hordak.forms.accounts.AccountForm

	
template_name = 'hordak/accounts/account_update.html'

	

	
slug_field = 'uuid'

	

	
slug_url_kwarg = 'uuid'

	

	
context_object_name = 'account'

	

	
success_url = '/'

	

AccountTransactionView

	
class hordak.views.AccountTransactionsView(**kwargs)

	
	
template_name = 'hordak/accounts/account_transactions.html'

	

	
model

	alias of hordak.models.core.Leg

	
slug_field = 'uuid'

	

	
slug_url_kwarg = 'uuid'

	

	
get(request, *args, **kwargs)

	

	
get_object(queryset=None)

	Return the object the view is displaying.

Require self.queryset and a pk or slug argument in the URLconf.
Subclasses can override this to return any object.

	
get_context_object_name(obj)

	Get the name to use for the object.

	
get_queryset()

	Return the QuerySet that will be used to look up the object.

This method is called by the default implementation of get_object() and
may not be called if get_object() is overridden.

Transactions

TransactionCreateView

	
class hordak.views.TransactionCreateView(**kwargs)

	View for creation of simple transactions.

This functionality is provided by hordak.models.Account.transfer_to(),
see the method’s documentation for additional details.

Examples

urlpatterns = [
 ...
 url(r'^transactions/create/$', TransactionCreateView.as_view(), name='transactions_create'),
]

	
form_class

	alias of hordak.forms.transactions.SimpleTransactionForm

	
success_url = '/'

	

	
template_name = 'hordak/transactions/transaction_create.html'

	

TransactionsReconcileView

	
class hordak.views.TransactionsReconcileView(**kwargs)

	Handle rendering and processing in the reconciliation view

Note that this only extends ListView, and we implement the form
processing functionality manually.

Examples

urlpatterns = [
 ...
 url(r'^transactions/reconcile/$', TransactionsReconcileView.as_view(), name='transactions_reconcile'),
]

	
template_name = 'hordak/transactions/reconcile.html'

	

	
model

	alias of hordak.models.core.StatementLine

	
paginate_by = 50

	

	
context_object_name = 'statement_lines'

	

	
ordering = ['-date', '-pk']

	

	
success_url = '/'

	

Forms

Contents

	Forms

	SimpleTransactionForm

	TransactionForm

	LegForm

	LegFormSet

As with views, Hordak provides a number of off-the-shelf forms. You may
need to implement your own version of (or extend) these forms in order
to provide customised functionality.

SimpleTransactionForm

	
class hordak.forms.SimpleTransactionForm(*args, **kwargs)

	A simplified form for transferring an an amount from one account to another

This only allows the creation of transactions with two legs. This also uses
Account.transfer_to().

See also

	hordak.models.Account.transfer_to().

TransactionForm

	
class hordak.forms.TransactionForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, instance=None, use_required_attribute=None, renderer=None)

	A form for managing transactions with an arbitrary number of legs.

You will almost certainly
need to combine this with LegFormSet in order to
create & edit transactions.

Note

For simple transactions (with a single credit and single debit) you a probably
better of using the SimpleTransactionForm. This significantly simplifies
both the interface and implementation.

	
description

	Optional description/notes for this transaction

	Type

	forms.CharField

See also

This is a ModelForm for the Transaction model.

LegForm

	
class hordak.forms.LegForm(*args, **kwargs)

	A form for representing a single transaction leg

	
account

	Choose an account the leg will interact with

	Type

	TreeNodeChoiceField

	
description

	Optional description/notes for this leg

	Type

	forms.CharField

	
amount

	The amount for this leg. Positive values indicate money coming into the transaction,
negative values indicate money leaving the transaction.

	Type

	MoneyField

See also

This is a ModelForm for the Leg model.

LegFormSet

A formset which can be used to display multiple Leg forms.
Useful when creating transactions.

Money Utilities

Ratio Split

	
hordak.utilities.money.ratio_split(amount, ratios)

	Split in_value according to the ratios specified in ratios

This is special in that it ensures the returned values always sum to
in_value (i.e. we avoid losses or gains due to rounding errors). As a
result, this method returns a list of Decimal values with length equal
to that of ratios.

Examples

>>> from hordak.utilities.money import ratio_split
>>> from decimal import Decimal
>>> ratio_split(Decimal('10'), [Decimal('1'), Decimal('2')])
[Decimal('3.33'), Decimal('6.67')]

Note the returned values sum to the original input of 10. If we were to
do this calculation in a naive fashion then the returned values would likely
be 3.33 and 6.66, which would sum to 9.99, thereby loosing
0.01.

	Parameters

	
	amount (Decimal) – The amount to be split

	ratios (list[Decimal]) – The ratios that will determine the split

Returns: list(Decimal)

Currency Utilities

Contents

	Currency Utilities

	Overview

	Classes

	Caching

	Currency Exchange

	Balance

	Exchange Rate Backends

Overview

Hordak features multi currency support. Each account in Hordak can support one or more currencies.
Hordak does provide currency conversion functionality, but should be as part of the display logic
only. It is also a good idea to make it clear to users that you are showing converted values.

The preference for Hordak internals is to always store & process values in the intended currency. This
is because currency conversion is an inherently lossy process. Exchange rates vary over time, and rounding
errors mean that currency conversions are not reversible without data loss (e.g. ¥176.51 -> $1.54 -> ¥176.20).

Classes

Money instances:

The Money class is provided by moneyd [https://github.com/limist/py-moneyed] and combines both an amount and a currency into a single value.
Hordak uses these these as the core unit of monetary value.

Balance instances (see below for more details):

An account can hold multiple currencies, and a Balance instance is how we represent this.

A Balance may contain one or more Money objects. There will be precisely one Money object
for each currency which the account holds.

Balance objects may be added, subtracted etc. This will produce a new Balance object containing a
union of all the currencies involved in the calculation, even where the result was zero.

Accounts with is_bank_account=True may only support a single currency.

Caching

Currency conversion makes use of Django’s cache. It is therefore recommended that you
setup your Django cache [https://docs.djangoproject.com/en/1.10/topics/cache/] to something other than the default in-memory store.

Currency Exchange

The currency_exchange() helper function is provided to assist in creating
currency conversion Transactions.

	
hordak.utilities.currency.currency_exchange(source, source_amount, destination, destination_amount, trading_account, fee_destination=None, fee_amount=None, date=None, description=None)

	Exchange funds from one currency to another

Use this method to represent a real world currency transfer. Note this
process doesn’t care about exchange rates, only about the value
of currency going in and out of the transaction.

You can also record any exchange fees by syphoning off funds to fee_account of amount fee_amount. Note
that the free currency must be the same as the source currency.

Examples

For example, imagine our Canadian bank has obligingly transferred 120 CAD into our US bank account.
We sent CAD 120, and received USD 100. We were also changed 1.50 CAD in fees.

We can represent this exchange in Hordak as follows:

from hordak.utilities.currency import currency_exchange

currency_exchange(
 # Source account and amount
 source=cad_cash,
 source_amount=Money(120, 'CAD'),
 # Destination account and amount
 destination=usd_cash,
 destination_amount=Money(100, 'USD'),
 # Trading account the exchange will be done through
 trading_account=trading,
 # We also incur some fees
 fee_destination=banking_fees,
 fee_amount=Money(1.50, 'CAD')
)

We should now find that:

	cad_cash.balance() has decreased by CAD 120

	usd_cash.balance() has increased by USD 100

	banking_fees.balance() is CAD 1.50

	trading_account.balance() is USD 100, CAD -120

You can perform trading_account.normalise() to discover your unrealised gains/losses
on currency traded through that account.

	Parameters

	
	source (Account) – The account the funds will be taken from

	source_amount (Money) – A Money instance containing the inbound amount and currency.

	destination (Account) – The account the funds will be placed into

	destination_amount (Money) – A Money instance containing the outbound amount and currency

	trading_account (Account) – The trading account to be used. The normalised balance of this account will indicate
gains/losses you have made as part of your activity via this account. Note that the normalised balance
fluctuates with the current exchange rate.

	fee_destination (Account) – Your exchange may incur fees. Specifying this will move incurred fees
into this account (optional).

	fee_amount (Money) – The amount and currency of any incurred fees (optional).

	description (str) – Description for the transaction. Will default to describing funds in/out & fees (optional).

	date (datetime.date) – The date on which the transaction took place. Defaults to today (optional).

	Returns

	The transaction created

	Return type

	(Transaction)

See also

You can see the above example in practice in CurrencyExchangeTestCase.test_fees in test_currency.py [https://github.com/adamcharnock/django-hordak/blob/master/hordak/tests/utilities/test_currency.py].

Balance

	
class hordak.utilities.currency.Balance(_money_obs=None, *args)

	An account balance

Accounts may have multiple currencies. This class represents these multi-currency
balances and provides math functionality. Balances can be added, subtracted, multiplied,
divided, absolute’ed, and have their sign changed.

Examples

Example use:

Balance([Money(100, 'USD'), Money(200, 'EUR')])

Or in short form
Balance(100, 'USD', 200, 'EUR')

Important

Balances can also be compared, but note that this requires a currency conversion step.
Therefore it is possible that balances will compare differently as exchange rates
change over time.

	
monies()

	Get a list of the underlying Money instances

	Returns

	A list of zero or money money instances. Currencies will be unique.

	Return type

	([Money])

	
currencies()

	Get all currencies with non-zero values

	
normalise(to_currency)

	Normalise this balance into a single currency

	Parameters

	to_currency (str) – Destination currency

	Returns

	A new balance object containing a single Money value in the specified currency

	Return type

	(Balance)

Exchange Rate Backends

	
class hordak.utilities.currency.BaseBackend

	Top-level exchange rate backend

This should be extended to hook into your preferred exchange rate service.
The primary method which needs defining is _get_rate().

	
cache_rate(currency, date, rate)

	Cache a rate for future use

	
get_rate(currency, date)

	Get the exchange rate for currency against _INTERNAL_CURRENCY

If implementing your own backend, you should probably override _get_rate()
rather than this.

	
_get_rate(currency, date)

	Get the exchange rate for currency against INTERNAL_CURRENCY

You should implement this in any custom backend. For each rate
you should call cache_rate().

Normally you will only need to call cache_rate() once. However, some
services provide multiple exchange rates in a single response,
in which it will likely be expedient to cache them all.

Important

Not calling cache_rate() will result in your backend service being called for
every currency conversion. This could be very slow and may result in your
software being rate limited (or, if you pay for your exchange rates, you may
get a big bill).

	
class hordak.utilities.currency.FixerBackend

	Use fixer.io for currency conversions

Exceptions

	
exception hordak.exceptions.HordakError

	Abstract exception type for all Hordak errors

	
exception hordak.exceptions.AccountingError

	Abstract exception type for errors specifically related to accounting

	
exception hordak.exceptions.AccountTypeOnChildNode

	Raised when trying to set a type on a child account

The type of a child account is always inferred from its root account

	
exception hordak.exceptions.ZeroAmountError

	Raised when a zero amount is found on a transaction leg

Transaction leg amounts must be none zero.

	
exception hordak.exceptions.AccountingEquationViolationError

	Raised if - upon checking - the accounting equation is found to be violated.

The accounting equation is:

0 = Liabilities + Equity + Income - Expenses - Assets

	
exception hordak.exceptions.LossyCalculationError

	Raised to prevent a lossy or imprecise calculation from occurring.

Typically this may happen when trying to multiply/divide a monetary value
by a float.

	
exception hordak.exceptions.BalanceComparisonError

	Raised when comparing a balance to an invalid value

A balance must be compared against another balance or a Money instance

	
exception hordak.exceptions.TradingAccountRequiredError

	Raised when trying to perform a currency exchange via an account other than a ‘trading’ account

	
exception hordak.exceptions.InvalidFeeCurrency

	Raised when fee currency does not match source currency

	
exception hordak.exceptions.CannotSimplifyError

	Used internally by Currency class

Notes

A collection of notes and points which may prove useful.

Fixtures

The following should work well for creating fixtures for your Hordak data:

./manage.py dumpdata hordak --indent=2 --natural-primary --natural-foreign > fixtures/my-fixture.json

Hordak Changelog

1.1.0

	Multi-currency support

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hordak	

 	
 	
 hordak.exceptions	

 	
 	
 hordak.models	

 	
 	
 hordak.utilities.currency	

 	
 	
 hordak.utilities.money	

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | Z

_

 	
 	_get_rate() (hordak.utilities.currency.BaseBackend method)

A

 	
 	Account (class in hordak.models)

 	account (hordak.forms.LegForm attribute)

 	(hordak.models.Leg attribute)

 	Account.DoesNotExist

 	Account.MultipleObjectsReturned

 	account_balance_after() (hordak.models.Leg method)

 	account_balance_before() (hordak.models.Leg method)

 	AccountCreateView (class in hordak.views)

 	
 	AccountingEquationViolationError

 	AccountingError

 	AccountListView (class in hordak.views)

 	AccountTransactionsView (class in hordak.views)

 	AccountTypeOnChildNode

 	AccountUpdateView (class in hordak.views)

 	amount (hordak.forms.LegForm attribute)

 	(hordak.models.Leg attribute)

 	(hordak.models.StatementLine attribute)

B

 	
 	Balance (class in hordak.utilities.currency)

 	balance() (hordak.models.Account method)

 	
 	BalanceComparisonError

 	bank_account (hordak.models.StatementImport attribute)

 	BaseBackend (class in hordak.utilities.currency)

C

 	
 	cache_rate() (hordak.utilities.currency.BaseBackend method)

 	CannotSimplifyError

 	code (hordak.models.Account attribute)

 	context_object_name (hordak.views.AccountListView attribute)

 	(hordak.views.AccountUpdateView attribute)

 	(hordak.views.TransactionsReconcileView attribute)

 	
 	create_transaction() (hordak.models.StatementLine method)

 	currencies() (hordak.utilities.currency.Balance method)

 	currency_exchange() (in module hordak.utilities.currency)

D

 	
 	date (hordak.models.StatementLine attribute)

 	(hordak.models.Transaction attribute)

 	description (hordak.forms.LegForm attribute)

 	(hordak.forms.TransactionForm attribute)

 	(hordak.models.Leg attribute)

 	(hordak.models.StatementLine attribute)

 	(hordak.models.Transaction attribute)

F

 	
 	FixerBackend (class in hordak.utilities.currency)

 	form_class (hordak.views.AccountCreateView attribute)

 	(hordak.views.AccountUpdateView attribute)

 	(hordak.views.TransactionCreateView attribute)

G

 	
 	get() (hordak.views.AccountTransactionsView method)

 	get_context_object_name() (hordak.views.AccountTransactionsView method)

 	
 	get_object() (hordak.views.AccountTransactionsView method)

 	get_queryset() (hordak.views.AccountTransactionsView method)

 	get_rate() (hordak.utilities.currency.BaseBackend method)

H

 	
 	hordak.exceptions (module)

 	hordak.models (module)

 	
 	hordak.utilities.currency (module)

 	hordak.utilities.money (module)

 	HordakError

I

 	
 	InvalidFeeCurrency

 	
 	is_bank_account (hordak.models.Account attribute)

 	is_reconciled (hordak.models.StatementLine attribute)

L

 	
 	Leg (class in hordak.models)

 	Leg.DoesNotExist

 	
 	Leg.MultipleObjectsReturned

 	LegForm (class in hordak.forms)

 	LossyCalculationError

M

 	
 	model (hordak.views.AccountListView attribute)

 	(hordak.views.AccountTransactionsView attribute)

 	(hordak.views.AccountUpdateView attribute)

 	(hordak.views.TransactionsReconcileView attribute)

 	
 	monies() (hordak.utilities.currency.Balance method)

N

 	
 	name (hordak.models.Account attribute)

 	
 	normalise() (hordak.utilities.currency.Balance method)

O

 	
 	ordering (hordak.views.TransactionsReconcileView attribute)

P

 	
 	paginate_by (hordak.views.TransactionsReconcileView attribute)

 	
 	parent (hordak.models.Account attribute)

R

 	
 	ratio_split() (in module hordak.utilities.money)

S

 	
 	save() (hordak.models.Account method)

 	(hordak.models.Leg method)

 	sign (hordak.models.Account attribute)

 	simple_balance() (hordak.models.Account method)

 	SimpleTransactionForm (class in hordak.forms)

 	slug_field (hordak.views.AccountTransactionsView attribute)

 	(hordak.views.AccountUpdateView attribute)

 	slug_url_kwarg (hordak.views.AccountTransactionsView attribute)

 	(hordak.views.AccountUpdateView attribute)

 	statement_import (hordak.models.StatementLine attribute)

 	
 	StatementImport (class in hordak.models)

 	StatementImport.DoesNotExist

 	StatementImport.MultipleObjectsReturned

 	StatementLine (class in hordak.models)

 	StatementLine.DoesNotExist

 	StatementLine.MultipleObjectsReturned

 	success_url (hordak.views.AccountCreateView attribute)

 	(hordak.views.AccountUpdateView attribute)

 	(hordak.views.TransactionCreateView attribute)

 	(hordak.views.TransactionsReconcileView attribute)

T

 	
 	template_name (hordak.views.AccountCreateView attribute)

 	(hordak.views.AccountListView attribute)

 	(hordak.views.AccountTransactionsView attribute)

 	(hordak.views.AccountUpdateView attribute)

 	(hordak.views.TransactionCreateView attribute)

 	(hordak.views.TransactionsReconcileView attribute)

 	timestamp (hordak.models.StatementImport attribute)

 	(hordak.models.StatementLine attribute)

 	(hordak.models.Transaction attribute)

 	TradingAccountRequiredError

 	Transaction (class in hordak.models)

 	
 	transaction (hordak.models.Leg attribute)

 	(hordak.models.StatementLine attribute)

 	Transaction.DoesNotExist

 	Transaction.MultipleObjectsReturned

 	TransactionCreateView (class in hordak.views)

 	TransactionForm (class in hordak.forms)

 	TransactionsReconcileView (class in hordak.views)

 	transfer_to() (hordak.models.Account method)

 	type (hordak.models.Account attribute)

 	(hordak.models.Leg attribute)

 	TYPES (hordak.models.Account attribute)

U

 	
 	uuid (hordak.models.Account attribute)

 	(hordak.models.Leg attribute)

 	(hordak.models.StatementImport attribute)

 	(hordak.models.StatementLine attribute)

 	(hordak.models.Transaction attribute)

V

 	
 	validate_accounting_equation() (hordak.models.Account class method)

Z

 	
 	ZeroAmountError

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Django Hordak

 		
 Installation

 		
 Using the interface

 		
 Using the models

 		
 Settings

 		
 DEFAULT_CURRENCY

 		
 CURRENCIES

 		
 HORDAK_DECIMAL_PLACES

 		
 HORDAK_MAX_DIGITS

 		
 Customising Templates

 		
 Double Entry Accounting for Developers

 		
 Accounting in six bullet points (& three footnotes)

 		
 In a little more detail

 		
 Examples

 		
 Example 1: Saving money to pay a bill (no sign flipping)

 		
 Example 2: Saving money to pay a bill (with sign flipping)

 		
 Hordak Database Triggers

 		
 The check_leg trigger

 		
 Procedure Code

 		
 The zero_amount_check constraint

 		
 Procedure Code

 		
 The check_leg_and_account_currency_match constraint

 		
 Procedure Code

 		
 The bank_accounts_are_asset_accounts constraint

 		
 Procedure Code

 		
 The update_full_account_codes trigger

 		
 Procedure Code

 		
 The check_account_type trigger

 		
 Procedure Code

 		
 API Documentation

 		
 Models

 		
 Account

 		
 Transaction

 		
 Leg

 		
 StatementImport

 		
 StatementLine

 		
 Views

 		
 Extending views

 		
 Accounts

 		
 Transactions

 		
 Forms

 		
 SimpleTransactionForm

 		
 TransactionForm

 		
 LegForm

 		
 LegFormSet

 		
 Money Utilities

 		
 Ratio Split

 		
 Currency Utilities

 		
 Overview

 		
 Classes

 		
 Caching

 		
 Currency Exchange

 		
 Balance

 		
 Exchange Rate Backends

 		
 Exceptions

 		
 Notes

 		
 Fixtures

 		
 Hordak Changelog

 		
 1.1.0

_static/up.png

_static/up-pressed.png

